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SUMMARY

Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Re-

search Center is discussed. The tunnel and the layout for neural net control or control by other parallel

processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumen-

tation and components as well as parallel processing and control strategies. Neural nets have already been

tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic

and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting

shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic

cascade mode of operation. That mode was operated for performing wake surveys in connection with
NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was pre-

sented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve set-

tings or tunnel state identifiers for selected tunnel operating points, condi-tions, or states. The neural nets

were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited

good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough
so that ten or more can be combined per control operation to interpret flow visualization data, point sensor

data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind

tunnel operations at Mach 2.0 based on shock wave parameters.

INTRODUCTION

There has been an investigation at Lewis Research Center of the use of artificial neural networks for

controlling wind tunnel operations primarily from flow visualization. The work is being accomplished in

a small subsonic/transonic/supersonic-to-Mach-4.0 wind tunnel. The 3.81 by 10 in. (0.0968- by 0.254-m)

tunnel is a platform for testing instrumentation and components as well as parallel processing and control

strategies.
Our expectation is that artificial neural networks in combination with workstations and the tunnel's

data handling and control systems will utilize flow visualization patterns in a most convenient manner.
Artificial neural networks can be trained in principle to map flow visualization patterns onto properties

such as shock wave positions (ref. 1) or onto other parameters that characterize the tunnel's operating

state.

The original intent was to use neural nets as sequencers, trained with an expert operator's examples.

A sequencer maps flow visualization patterns, point sensor outputs, current control settings, model data,

and other inputs onto the next tunnel operating state. The operating state is represented by sensor readings

or control settings. In effect, the neural nets learn to compress data by example, with-out the use of physi-
cal models or theories. Our recent tests of this concept indicate that a hybrid control system that uses neu-

ral nets as one component is probably more suitable for meeting the expectations of our intent.

The limits, strengths, and weaknesses of the neural net approach have been tested to some extent
with archival flow visualization records (ref. 2) (the tunnel has been operated occasionally since 1946).



Thetunnelrecentlywasreactivated,andshadowgraphwasrecordedatMach2 throughthetunnel's
8ft. (2.44m)longopticalwindowsforthefirsttimesincethe1950's.But,thisreportis concernedmainly
withtestingtheneuralnetapproachduringrecentoperationsof thetunnelasathree-blade,four-passage
cascadeatsubsonicandtransonicconditions.Thecascadewasusedfor wakesurveysinconnectionwith
NASA'sAdvancedSubsonicTechnology(AST)noisereductionprogram.Mostof thetestswerecon-
ductedwithoutflowvisualizationandatasingleflow condition;hencetrainingsetscouldnotbeac-
quired.But,therewasinitiallyacascadetuningphasewhereshadowgraphwasusedandwherethetunnel
wasoperatedatamodestnumberof differentconditions.Tuningrequiresadjust-mentsof thetunnelroof
andfloorgeometriesandadjustmentsoftheboundarylayerbleeds.Theoperatorattemptstoequalize
leadingedgeshockwavesandcompressionbubbles,bladewakes,andMachwavesfromtheblades'trail-
ingedges.

Tuningwasadifficult challengefor theneuralnetsandwouldbefor anyflow-visualization-based
approachtocontrollingoperations.Tuning,in thefirst place,isaniterativeprocedure.In theoperator's
opinion,flowvisualizationwasvitalduringtheinitial stagesandinadequateduringthefinalstageswhere
pressuresurveysof thepassageflowsweremostuseful.Anautomatedsystemtoemulatetheoperator's
tuningexercisemustadaptjustastheoperatordoes.A secondcomplicationis thattheoperatorusedex-
pertknowledgefrompreviouscascadetuningexercises(ref.3).Expertknowledgewasrequiredto
supplementunreliablepressurereadingsandunrepeatablecontrolreadings.Ineffect,tuninguseda
weaklydefined,timevaryingmixtureofflow visualization,pressuresensorreadings,andexpertknowl-
edge.

A feedforwardnetworkshouldinprinciplestill beabletolearnsuchanexercisegivenenough
trainingexamples.In effect,all thepressuresensordata,flowvisualizationpictures,valvesettings,etc.
aremappedontonewvalvesettings,Machnumbers,orsensorreadings.Thisblanketapproachassumes
thatmanyinputswill beirrelevantatanymoment.Thenetisexpectedto learnbyexampleto ignorethe
irrelevantinputsandtolearnthecorrectweightingsof theotherinputs.Thereisnowayto quantifythe
sizeof thetrainingsetrequired;thetrainingsetprobablyshouldatleastcovertheinput,outputspacesof
parametersuniformly.In practice,suchatrainingsetis likely to beimpracticallylarge.Thepracticalap-
proachis to discoverwhereneuralnetsaremostusefulandto combinethemin ahybridsystemwith
otherparallelprocessingparadigmssuchasrulesandfuzzylogicto controloperations

Thispaperpresentsresultsonlyfor theflowvisualizationrecordsasinputs.Thislimitedexercise
servesto: introducethewindtunnelsetupwhichcanbeusedaffordablyfor researchin theintelligentcon-
trolof operationsaswellasotherNASAprojects(HighSpeedCivilianTransport(HSCT),AST,emis-
sionstesting,etc.);introducethesystemsfor datahandling,neuralcomputing,andcontrol;and
demonstratetherequirements,speed,andperformanceof neuralnetsfor interpretingshadowgraphdata
recordedduringthecascadetuningprocess.Inparticular,thesoftwarenetshaveshownmorethanad-
equatespeedonaSGICrimsonworkstationfor currentoperations,rapidlearningof shadowgraphtotun-
nel-statetrainingrecords,goodimmunitytonoiseaswellaschangesincontrastandbrightness,andgood
geometrysensitivity.Butpoorimmunitytoextraneouspatternsandrotationalor translationalmovements
of theshadowgraphfieldleadstoarequirementfor carefulcontrolof theseconditionsor largetraining
sets.Thecascademodeof thewindtunnelisoutlinedin thenextsection.Thenthesystemfor neuralnet
controlof windtunneloperationsusingneuralnetinterpretationof flowvisuali-zationrecordsis dis-
cussed.Finally,theresultsoftrainingandtestingtheneuralnetsarepresented.Thereisabriefdiscussion
offutureworkfor neuralnetcontrolbasedonidentificationof shock-wavepositionsandshapesatMach
2.0to4.0.

WINDTUNNELIN CASCADECONFIGURATION

Thecascadeandtuningcontrolsaredescribedinabbreviatedform.Theobjectiveis tolist thekey
elementsthataffectflowvisualization,sincethispaperisconcernedprimarilywiththecontrolof opera-
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tionsusingneuralnetinterpretationof flow visualization patterns. Detailed discussions of the cascade, its

structure, its purpose, its sensors, its controls, and its future are outside the scope of this paper. All of

these factors affect wind tunnel operations, but in ways too complex to be factored into the present neural

net research.

The wind tunnel, which has been operated occasionally since 1946, is little more than a rectangu-lar

duct connected to an altitude exhaust system. The flat roof and floor segments are separated by

10 in. (0.254 m). The three-blade, four-passage cascade was inserted in the duct as shown in figure 1. The

upstream end of the cascade insert is a bell-mouth flow conditioner through which atmospheric air enters.

Optical access is provided through a 14 in. (0.356 m) long window. Shadowgraph or schlieren must be

used in double-pass mode off a mirror attached to the rear wall of the cascade. A rear surface mirror is

used for that purpose. The window, mirror combination definitely is not schlieren grade.

Figure 2 shows the details of the cascade insert. The actual flow passage is only 4.60- by 3.81-in.

(0.117- by 0.0968-m). There are 3 airfoils or blades, and each blade has a chord of 3.00 in. (0.0762 m)

and a span of 3.81 in. (0.0968 m). The three blades are staggered to emulate the blades of a rotating fan in

turbomachinery. The roof and floor of the cascade are defined by tail-board, half-blade-flap combina-

tions: the tunnel operator must adjust the passage heights and tail-board, half-blade-flap angles as part of

the cascade tuning process. These adjustments have a significant effect on flow visualization, and were

accomplished during the first three days of cascade tuning. The operator also adjusts boundary layer

bleeds during the tuning process. The boundary layer bleeds are arranged in three groups: roof bleeds,

floor bleeds, and a pair of sidewall bleeds. Both sidewall bleeds are opened the same percentage at all

times. We shall simply refer to the roof, floor, and sidewall bleeds or bleed settings in subsequent discus-

sions. Boundary layer bleed adjustments constitute fine tuning, and were accomplished during the final

two days of cascade tuning. The effects on flow visualization are less, and wake pressure surveys were
more useful than flow visualization during the final two days of cascade tuning. Ironically, we took the

training examples for this report from the fourth day, when flow visualization was less effective. The rea-

son was that we later attempted to repeat this part of the tuning process for comparison with the original.

Finally, there is a traversing probe for wake pressure surveys and a fixed position Mach number indicator;
both are downstream of the blades as indicated in figure 2.

There are two additional, significant controls. They are the valves EL 2403 and EL 2403 A shown

connecting the duct to the altitude exhaust system in figure 3(a). Figure 3(b) summarizes the more than 40

parameters which are involved in the actual cascade tuning process. Only 6 are incor-porated in the train-

ing sets discussed in detail later in this report.
The next section discusses how neural nets were incorporated in the cascade tuning exercise and

how they will be incorporated in future work.

SYSTEM FOR CONTROLLING WIND TUNNEL OPERATIONS WITH
NEURAL NETWORKS

The general layout for controlling operations is shown in figure 4. All the elements for this layout

exist, but are not fully interconnected at this time.
The SGI Crimson XS24 workstation is central for this report, but is to be regarded as an acces-sory

module (slave) for operations. The artificial neural nets are implemented in software (some would say by

emulation). The Crimson has VME slots to receive neural-net hardware, but hardware is not needed at the

present stage of development. A commercial neural net package (ref. 4) is used for generation and train-

ing of the neural nets. The package supports menu generation, modification, and interrogation of a large

variety of nets including several feed forward architectures and training algo-rithms. The package also

supports rapid generation of parallelized C code for the trained nets. The compiled code can be linked
with other code or combined with other software in a hybrid system for controlling operations.
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Mostof thedatachannelsusedforthisstudyconsistof pixelsof flow visualization.Theworkstation
receivesflowvisualizationdirectlythroughaVMEmountedvideoframegrabber.Thevideoframegrab-
berisessentiallyasingle-shotframegrabberwhichsupportsalargenumberof videostandards.Thisin-
vestigationwasperformedwithaCCDcamera(ref.5) andtheNTSCstandard.TheCCDcameraand
similararraydetectorscanbeusedwithmanykindsof flow visualizationsuchasinterferometry,laser
inducedfluorescence,andschlieren.Thisstudywasperformedwithshadowgraphto minimizethewin-
dowpattem.Someof thetunnel'swindowsaremorethan50yearsoldandaredefinitelynotschlieren
free.Tomakemattersworse,theshadowgraphwasoperatedindouble-passmodeoff aback-surface
sidewallmirrorwithasignificantcrack.

Shadowgraph was adequate for the shock-wave and wake visualizations required for the early stages

of the cascade tuning exercise.

Images were captured and prepared for processing by the neural nets in the following way. A

646 by 486 pixel frame was grabbed by the frame grabber and stored in a file. The stored image was con-
verted to black and white (8 bits) and cropped to 486 by 266 pixels. Figures 5(a) and 5(b) show samples

of full and cropped images of a cascade flow condition. Cropping saves only the flow visuali-zation field.

The image was then converted to 60 by 60 pixels. Figure 5(c) shows the 60 by 60 pixel version of the

sample. The neural net package can handle images as large as about 128 by 128 pixels. The operations are

accomplished with standard workstation software. The 60 by 60 pixel images were then converted to bi-

nary for presentation to the compiled neural net.
Training, by contrast, requires that a desired output vector be appended to an image to form a train-

ing record. Records are then concatenated to form a training set. Training is accomplished, as discussed in

the next section, with the menu driven portion of the neural net package.
There are at least three other kinds of data that can be used for controlling operations. These data

include point sensor readings such as provided by pressure sensors, data generated from computational

models, and control settings. Our intent is to supply the workstation with point sensors readings in either

of two ways. Point sensor readings can be supplied rapidly through the RS232 ports of the workstation by

the tunnel' s distributed control system (Modicon in fig. 4)(ref. 6). That system is still being constructed,
and drivers still must be written. The second way is to supply point sensor readings over the network us-

ing the central data acquisition system known as Escort D. Escort D can supply 800 channels of sensor
data in ascii format and will be used at least temporarily for future work. Models can be used to compute

input patterns for the neural networks. The simplest example would be to calculate shock-wave positions,

angles, and shapes. The performance of the feed forward net is relatively insensitive to image contrast, so

that simple two level images, computed for a large number of cases, might be adequate for training. Fi-

nally, control valve settings can be supplied by the Modicon distributed control system.

The expected performance of the layout of figure 4 can be described. In fact, only the flow visual-
ization channels were hooked to the workstation for the work described in this report. Point sensor read-

ings and control settings were read manually. The Escort D data handling system and the distributed

control system were not available. Nevertheless, the timing limitations of the subsystems of the tunnel are

known. The frame grabber required several seconds to acquire an image and create an image file. The

update time for point sensor readings from Escort D is measured in seconds, and the tunnel operator' s

own responses are often measured in minutes. The operator's response is deliberately slow to prevent

window damage. (The maximum pressure-change-rate must be less than 6 psi per min.) A software neural

network, by contrast, was measured to process more than 300 of the 60 by

60 pixel images per second. There would be plenty of time for neural net processing, even if a 30 frame-

per-second frame grabber could be used.

The natural inertia of wind tunnel operations allows plenty of time to use many neural nets per op-

eration. In any case, the mix of inputs, and the nets in force, will vary from one stage of operations to the

next. As stated in the introduction, the importance of flow visualization was high during the early stages
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of cascadetuning,butwassupplantedbywakesurveysduringlaterstages.Thedecisiontochangefrom
onesetofinputsto anotheris anexpertdecision,andmightbeaccomplishedbestbyarulebasedhybrid.
Perhaps,amasterneuralnetmightwork.But,theneuralnets,ineffect,arebeingusedasdatacompres-
siondevices.Eachnetis trained,orprogrammedin someway,to mapamixof inputsontocomparatively
fewcontrolsettings.Thenet-to-netarchitecturemightvarydependingontheinputs.Pressuresettingsare
probablythebestchoicesfor outputsatpresent,sincethesettingsofthetunnelvalvescannotbereadac-
curatelyorrepeatably.Theso-calledmastercontrollerin figure4 will poll theworkstationperiodically
for appropriatesettings.Thisparticularapproachshouldmakegooduseof parallelprocessingandshould
interferetheleastwithcurrentapproachestowindtunneloperations.In effect,theworkstationwill func-
tionasanotherslavemodulein thedistributedcontrolsystem.

Theresultsof thisstudypertaintoneuralnetsthatuseonlyflowvisualizationinputs.Wesuspect
thatcontrolof windtunneloperationsusingneuralnetinterpretationof pureflowvisualizationrecords
will workonlyfor certainrestrictedoperations.Anexamplewouldbecontrollingtheposition,shape,or
angleof ashockwave.Thetrainingandresponsesof neuralnets,trainedwiththeshadow-graphrecords
fromthecascadetuningexercise,arediscussedin thenextsection.

TRAINING

TrainingSetsfor CascadeTuning

Most of this section discusses a training set formed from a small subset of the total tuning steps.

Tuning required 5 separate runs in January, 1994. The tuning process also involved more than 40 param-

eters: parameters affecting roof and floor geometries (tail boards and flaps in fig. 2), Mach numbers,

boundary layer bleed settings (figs. 2 and 3), valve settings (figure 3(a)), pressure rake positions (fig. 2),

and pressure readings (fig. 3(b)). The actual utilization of each parameter varied greatly. The readings and

settings of many parameters proved to be unreliable, as mentioned in the introduction.
Training sets initially were constructed from the shadowgraph and tunnel parameters from the first

four tuning runs. There were 44 tunnel states recorded during these runs. The final tuning run (Run 5)

involved extremely fine tuning and checking and was not used. Various kinds of training records were

created. Inputs consisted mainly of shadowgraph. Outputs contained various combinations of actual tun-

nel parameters. The records were apportioned between training and test sets. The per-formance of the nets

for predicting the test sets was passable only when the test set consisted of every other tunnel state. Pre-

dictions of test sets consisting of entire runs were inadequate.

The following problems with the training sets were identified subsequent to the January tuning runs.

Some of the pressure readings, Mach numbers, and control settings were incorrect or inaccurate. The

alignment of, and illumination pattern from, the shadowgraph changed significantly from one run to the
next. There was a large vertical crack in the wall mirror whose appearance changed from one run to the

next. The dirt patterns on the windows changed from run to run, where dirt originated from oil leaks and
winter salt streaks. A traversing probe (fig. 2) appears at random locations in some of the frames. The

training examples showed only a few changes for some parameters.
We decided to specialize on the fourth run to minimize the effects of variations in alignment, illumi-

nation, and dirt patterns. We also decided to repeat run 4, since that run did not require that the roof and

floor geometries be changed. There were 21 states of the tunnel recorded during this run. Many of the

states were essentially the same, differing in the position of the traversing probe. The inputs were the 60

by 60 pixel renditions of the shadowgraph as in figure 5(c). Leading edge bubbles and shock waves were
visible at each blade along with trailing edge Mach waves and wakes as in figures 5(a) to 5(c). There were
also streaks of salt on the window as well as a vertical crack in the mirror. The shadows of the three

blades were visible. Some patterns were in the window itself. The pixel values ranged between 0 and 255.



Theywerenormalizedtypicallybetween0and1forpresenta-tiontothenets.Therearein facttwoforms
of normalization.An individualpixelcanbenormalizedfortherangeof valuesshownbythatpixelin the
trainingandtestsets.Trainingsetsnormalizedin thismannerarelearnedmostrapidly.But,theillumina-
tionpatternmustnotchange,if thenetis to beusedtomakepredictionsfromnewdata.It issafertonor-
malizeallthepixelsasif thefull rangeof valueswasalwaysbetween0 and255.

Sixof themorethan40possibleparameterswereselectedasoutputs.Theseoutputswere:theper-
centopenreadingof themainvalve(2403in fig. 3(a))connectingthewindtunneltothealtitudeexhaust;
thepercentopenreadingof averniercontrolvalve(2403A in fig. 3(a))bypassingthemainvalve;the
percentopenreadingsof theroof,floor,andsidewallboundarylayerbleeds(fig. 2);andthedownstream
Machnumber(fig.2).Noteagainthatthesidewallreadingisactuallythereadingfor eachof twosidewall
bleeds.Thesenumberswerenormalized,typicallybetween0.2and0.8for sigmoidtransferfunctions.

Therewereonlytwosettingsofthemainvalvein thetrainingset.Theywere0percentand
22percent.Theactualmeaningsofthesenumbersarequestionable.Thevalveleaksin theclosedposi-
tion,for example.Thesettingfor agivenstatemightvaryby 10percentasaltitudeexhaustpressurevar-
ies.It wouldbemoreappropriatetocallthereadingsvalvestate1andvalvestate2,butthetypical
readingswereretainedfor thisstudy.Therewere5settingsofthebypassvalve.Thesesettingswerecriti-
cal,butnotaccuratelyreadable.A 5percentvariationwastobeexpected.Again,theactualnumberswere
retainedin thetrainingset,butshouldbeinterpretedasvalvestatesettings.Theroofbleedhad3settings,
thefloorbleedhad2 settings,andthesidewallbleedhad2 settings.Trainingin sequencermode,asde-
finedin thenextparagraph,reducedthenumberof bypassvalveandbleedsettingsbyone.TheMach
numberrangedfromabout0.5toabout1.5.Thisrangeof Machnumberswasappropriateonlyforthe
tuningexercise.Subsequentoperationof thecascadefor wakesurveysin connectionwith theASTpro-
gramwassubsonic.

Thetrainingsetswereconstructedinasequencermode.Thatis,the6parameters,whichwereap-
pendedto ashadowgraphpatterntoformatrainingrecord,representedthenextstateof the tunnel rather
than the current state. There were in fact only 7 distinct changes of the 6 parameters during tuning run 4.

The traversing probe is in different positions for the repeated records. Another training set was con-

structed where only the required tunnel state change was identified. There were 7 outputs for the 7

changes of tunnel state, where an output is 1 only for the state change required by the input shadowgraph
and 0 otherwise.

Aligning the shadowgraph for zero rotation or translation of the flow visualization image was found

to be particularly difficult. The instrument was mounted on tires and was used with the broken mirror. In

an attempt to train for alignment errors, 4 additional training records per original training record were

constructed by translating the field 5 pixels along the positive and negative x and y directions. The train-

ing set then contained 100 records for 20 original run points. One of the original 21 records was discarded

because the shadowgraph light source had moved during its recording.

We attempted to repeat tuning run 4 in May, 1994. The control system itself was not improved, but

the reliability of the sensor readings was much improved. Laser velocimetry had been used to check some

velocities. The flow visualization could not be duplicated, however. The relative blade positions had been

distorted; the dirt patterns had changed from salt streaks on the windows to oil streaks on the mirror; and

the mirror crack had changed. However, a training set which combined the January and May tuning exer-

cises proved to be slightly more resistant to alignment errors as will be discussed.

The neural nets and their training are discussed in the next section.

Neural Nets for Cascade Tuning

Several types of artificial neural nets were trained with the training sets described in the previous

section. These nets were generated easily with the commercial package. The feedforward net trained with

various modifications of the back propagation algorithm learned the training sets adequately. The training



parametersaffectedtrainingtimesomewhat,but,asmightbeexpected,didnotaffectthefinalperfor-
manceof thetrainednet.Trainingtimewasnotanimportantfactorforthiswork.Thesizeof thefeed
forwardnetdoesnotincreasesignificantlyasthenumberof trainingexamplesincreases.Fuzzy
ARTMAPwasalsousedduringtheMayrepeatof tuningrun4. Thisnettrainsquicklyandperformsad-
equately,but itssizeincreasesexorbitantlyasthenumberof classesOf shadowgraphpatternsincreases.

Feedforwardnetshad3600inputnodesforthe60by 60pixelimages.Therewere6outputsfor the
6tunnelparametersdiscussedin theprevioussection.Therewasonehiddenlayercontaining7to 14
nodes.Trainingrequiredbetween100and500presentationspertrainingrecord.

A feedforwardnetwasalsotrainedto identifyoneofthe7grosstunnelstatechangesonly.Thisnet
usesa1of ncodetoforcethewinningoutputnearunity.

Asmentioned,thehybridsystemforcontrollingoperationscaneffectivelyuse10ormorenetsper
operation,sincethesoftwarenetsarefastenough.Severaldifferenttypesof netsmightbeused.Thetests
discussedin thenextsectionreferonlytothefeedforwardnet.

RESULTSANDDISCUSSION

Setsfor TestingCascade-TuningNets

Thebesttestof aneural-netsequenceris forthesequencertoidentifycorrectlythenextoperating
stateof thetunnelduringanactualrun.Thisinformationcouldbeusedto automateopera-tions.Theneu-
ral nets,trainedwithJanuaryshadowgraphdata,werenotabletorecognizethecorrectstateofthetunnel
whensuppliedwiththeMayshadowgraphdata.As mentioned,therewereanumberof problems,butthe
lackof repeatabilityoftheshadowgraphpatternswastheworst.

Thenextkindof testtriestodeterminewhatchangesin theshadowgraphpatternswill degradethe
performanceofthenets.A numberof testsetswerecreatedfor thispurpose.Thefirsttestsetwassimply
theoriginaltrainingset.Thatsetdetermineshowwell thefeedforwardnets,orothernets,learnedthe
trainingrecords.Next,a trainingrecordwasalteredtovariousextents,andanychangesof thenet'sre-
sponsewerenoted.Threetestsetswerecreatedfor thispurposeusingonlydegradedver-sionsof thesec-
ondpointin thetuningrun.Thesecondpointwasrecordedatanuntunedconditionandwith the
downstreamMachnumberindicatorshowing1.46.Figure5(b)showstheunalteredshadowgraph.

Thefirsttestsetwasconstructedbyaddingvariousamountsof noiseto theshadowgraph.A noise
patternis addedinamplitudeproportionsvaryingfrom0percentto50percent.The50percentcaseis
shownin figure6.

Thesecondtestsetwasconstructedbychangingthebrightnessoftheshadowgraphin incrementsof
10percentfrom-50percentto +50percentoftheoriginal.

Thethirdtestsetwasconstructedbytiltingthesecondrecordupto 5degreescounterclockwise.
Tiltingrequiressomeclippingof thecomersof thefieldandtheadditionof someblackpixelstofill in.
Thesetisshownin figure7.

All thetestsetswerecreatedusingtheworkstation'sgraphicsutilities.
Othertestrecordswerecreatedaswellby scrapingpartsof theshadowgraphpatternsatrandomin

animageeditororbychangingthenumberof greylevelsin theimageto effectchangesincontrast.Two
levelsis theequivalentof blackorwhite.

Theserecordswerethenpresentedtothefeedforwardnetstrainedwith theJanuaryrunandthecom-
binedJanuaryandMayruns.Theresultsarepresentedin thenextsection.

Resultsof Testing

Figure8 showstheresponseof thefeedforwardnetwhichwastrainedtoidentifyonlythetunnel
statechange.Theresponseis to the100recordtrainingsetitselfwhichcontainsthe5pixelshiftedimages



aswellastheoriginalimages.Thereare7 graphsfor the7 statechanges.Thepointsrepresentthenet's
response,andthelinesrepresentthetrainingresponse.Transitionsto thelastnewstateappearmostoften.
Transitionsto states1and5arenextmostoften.

Figures9, 10,and11haveidenticalformats.Eachsummarizestheresultof degradingthe
shadowgraphof thesecondrunpointwithadifferenteffect.Onlytheresultsforthevernierbypassvalve
andtheMachnumberareshown;sincetheeffectsontheotheroutputsaresimilar.Thelargedotsineach
graphshowtheresponseofthenettrainedwiththeJanuarydataonly.Thesmalldotsshowtheresponse
of thenettrainedwithboththeJanuaryandMaydata.

Figure9 showstheresultof makingtheshadowgraphasmuchas50percentnoise.Figure9(a)
showstheeffectontheneuralnetestimateof thevalveopening.Theupperlinerepresentsthetraining
level,andthelowerline is thelevelatwhichtheneuralnetincorrectlyspecifiesthevalvestate.Fig-ure
9(b)showstheeffectof noiseontheneuralnet'sestimateofMachnumber.Thelinerepresentsthetrain-
inglevel.

Figure10showstheresultof makingtheshadowgraphasmuchas50percentdarkerand50percent
lighterthantheoriginalshadowgraph.Figure10(a)showstheeffectontheestimatedvalvesetting,and
figure10(b)showstheeffectontheMachnumber.Theinterpretationsof theoutputsandlevelsarethe
sameasfor figure9.

Figure11 shows the result of tilting or rotating the shadowgraph as much as 5 degrees. Again, figure

1 l(a) represents the estimated valve setting; figure 1 l(b) represents the estimated Mach number; and the

interpretations of the outputs and levels are the same as for figure 9.

The results of changing the number of shadowgraph levels from a maximum of 256 to as few as 2
levels are not shown. The effects are minor.

The results of altering the window dirt patterns in a image editor are also not shown. The effects are

major.
These results are discussed in the next section.

Discussion of Results

The neural nets were easily able to learn, or over learn, the training records. The state transition de-

cisions represented by figure 8 are all correct and are much better than the 0.5 decision level. Some neu-

ral-net types learned the training sets faster and even better, but that apparent increment in perfor-mance

provided no practical benefits for this study. The feedforward net, trained with some form of the back

propagation algorithm, was adequate. The processing speed of the trained nets has already been men-

tioned as being excellent
The neural nets had a decidedly mixed performance record for handling degraded images. Uni-form

noise, brightness changes, and changes in the number of grey levels in the image do not degrade perfor-
mance. The estimates of the valve settings in figure 9 for noise and figure 10 for brightness remain above

the lower limit for a correct identification of the valve state. The number of grey levels in the image was

observed to have a small effect on net performance. In effect, a 2 bit image did not perform much worse

than a 8 bit image.

But, small changes in the overall pattern had a serious, negative effect. Figure 11(a) shows that tilt-

ing the shadowgraph images by more than 2 to 3 degrees causes an erroneous identification of valve state.

Figure 11(b) shows that the estimated Mach number drops rapidly from supersonic to subsonic as the tilt

increases. The outputs will tend toward limits as tilt increases. These limits were registered throughout the

May test run. The limits were essentially the same for different types of nets. The same kind of behavior

occurs when the image patterns are altered in other ways. Images such as figure 5 show dirt patterns (salt

streaks). Altering the dirt patterns somewhat in an image editor tends to drive the net estimates to the
limits.



Thefailureof theneuralnetstoestimatethestatesof theMaytestruncannotbeattributedto any
singleeffectin theshadowgraph.Roughly,thefailurewasequivalentto havingabouta5degreetilt in the
•flow visualization.Buttheactualtilt errorwasnomorethanadegreeortwo.Therewasadistortionofthe
backwallof thetunnelbetweentheJanuaryandMayruns.Thelowerblade(figs.2and3(b))shiftedin
positionabout0.125in. (3.18ram).ThedirtpatternschangedbetweentheJanuaryandMayruns.An-
othersourceof changingpatternswastheflow visualizationsystemitself.Thewin-dows,datingfromthe
1940's,havenoticeablepatterns,andthesewindowswereremoved,cleaned,andreplacedfrequentlybe-
tweenJanuaryandMay.TheToeplerschlieren(usedfor shadowgraph)anditsmirrorsareratherancient;
themirrorshavetheirownpatterns.Thecrackin therearwallmirrorwasanothersourceof atimevary-
ingpattern.Themirrorwasalsoarearsurfacemirror,therebyrequiringtwopassesthroughits ownglass.

CombiningtheJanuaryandMayrunsfor trainingimprovedslightlythetoleranceof thenetsfor
imageschanges.Thesmalldotsin figures9to 11representthecombinedtrainingset.Thecurvesdefined
bythesmalldotsaresomewhatflatterthanthecurvesdefinedbythelargedotsfor theJanuaryrunonly.

CONCLUDINGREMARKS

Thethree-blade,four-passagecascadetuningexercisewasmuchtoocomplicatedtodemonstrate
neural-netautomationoftunneloperations.Nevertheless,theexerciseclearlydefinedhowresearch,de-
velopment,andapplicationsof neural-net,aswellasotherparallelprocessing,techniquesshouldbeex-
ecutedinawindtunnelenvironment.Thepresentworkstation,software-netcombinationis muchmore
thanadequatetohandlethecurrentrateof operations.Thecombinationis wellplacedtoacquireflow
visualizationinputs,theentiresetof tunnelsensordata,computationalmodels,andeventuallyto advise
theModiconcontrolsystem.Theconceptof havingtheparallelprocessingin asideloopmakesit easyto
incorporateandtestanyotherapproachwithoutaffectingtunneloperations.Thetunnelisnowmuchbet-
terequippedto supplyinputstothesideloop.Theactualsensordatasystemwasmodifiedextensively
sincetheJanuaryrun.Futureworkwill beableto usepressurereadingsmuchmorereliablyandeffi-
ciently.Thenetswill beusedto estimatepressuresettingsratherthanvalvesettings.

Theconceptof usingflowvisualizationrecordstocontroloperationsremainsunproven.But,the
requirementsandsetupfor makingthatproofarebetterknown.Theneuralnetseasilylearntheflowvisu-
alizationrecords.Thenetsareverysensitiveto changesin thelargescalepatterns,butarerea-sonably
insensitiveto noiseandchangesinbrightness.Unfortunately,largescalepatternssuchaspatternscreated
bydirt orwindowdefectsshouldbeirrelevanttooperations.In fact,thedecisionto noteor ignoreany
patternisessentiallyanexpertdecision.A feedforwardnetmustlearnto makethatdecisionby example.
Trainingsetsmustbelargeenoughandinclusiveenoughtocontaintherelevantexamples.Thereisevi-
dencethatincreasingthetrainingsetsizedoesreducethesensitivityof thenettoirrelevantchangesof
alignmentof theflowvisualizationsystem.In fact,thenetprobablycanbetaughtto ignoreshiftsand
rotations of fixed patterns. Training sets can become quite large. For exam-pie, the January training set

represented only 7 changes of the state of the tunnel. The actual training set included 100 records.
The failure mode of the neural networks was revealed by this work. As the flow visualization de-

grades, the estimated outputs tend toward those of a default state. Perhaps, a net can be trained to map

irrelevant pictures onto that state. The rule based portion of the hybrid system for controlling operations

can then be programmed to ignore the output of the net when that state is generated by the net.
The over sensitivity of the nets to pattern changes is a nuisance in many cases. That sensitivity also

has the potential to be extremely valuable for controlling wind tunnel operations. Operations often depend

critically on accurate identification of shockwave signatures. That is, there is a need to identify

shockwave positions, shapes, angles, strengths, and groupings. The neural nets have the potential to

change control estimates based on minute changes of these features. Our next tests will be conducted at

Mach 2, and will attempt to estimate operations from shock signatures. We will attempt to minimize ex-



traneouspatternsorchangesinpatternsbycarefullyaligningtheflowvisualizationsystem.Thepatterns
cannotbeeliminatedentirelyfromtheancientwindowsofthetunnel,sowewill alsotestwhetherwecan
trainoursystemofnetsto identifysaidpatternsasirrelevant.

Theflowvisualizationsofarhasbeenshadowgraph.Thesetupwill handleanyotherformof flow
visualizationaseasily.ThetunnelwindowsdonottolerateToeplerschlierenverywell.Butfocusing
schlierenis available.FutureworkonNASAprioritiessuchasemissionsmayutilizefluores-cence,vari-
ousformsof interferometricspectroscopy,particleimages,etc.
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from wi_d _nnel

Figure 4._Layout for controlling tunnel operations using artificial

neural networks,

Figure 5.--Shadowgraph images for second data point of Jan. tuning

run 4. (a) Shows the image from the frame grabber. (b) Shows the

image after cropping. (c) Shows the image converted to 60 x 60

pixels as used by the neural nets. Mach number indicator read 1,43.

Images are inverted left to right relative to the actual flow direction.
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Figure 6._Shadowgraph images from figure 5b with noise added; picture is 50 percent noise.
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Figure 7._Shadowgraph images from figure 5b showing two extremes of tilt or rotation; rotated images were used to test response of net

to alignment errors of shadowgraph,

16



RES PONS_TATE 1
i_-

0.8

ox0

0.2 I
0 20 40 60 80100ECORDR

STATE 2

STATE 5

STATE 3

STATE 6

STATE 4

STATE 7

Figure 8.--Training results for Jan. training set; lines show correct transition states for different records of training set; dots
show trained net's responses to records; records are numbered from 1 to 100.
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Figure 9,--Response of nets to noise; large dots represent net trained with Jan. records; small dots represent net trained with Jan,
and May records, (a) Shows the estimated bypass valve opening where the upper line is the training value and the lower line is the
minimum error free estimate• (b) Shows the Mach number estimates where the line is the training value.
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